Discrete Painlevé equation, Miwa variables and string equation in 5d matrix models
نویسندگان
چکیده
منابع مشابه
Unitary One Matrix Models: String Equation and Flows
We review the Symmetric Unitary One Matrix Models. In particular we discuss the string equation in the operator formalism, the mKdV flows and the Virasoro Constraints. We focus on the τ -function formalism for the flows and we describe its connection to the (big cell of the) Sato Grassmannian Gr via the Plucker embedding of Gr into a fermionic Fock space. Then the space of solutions to the stri...
متن کاملDesargues Maps and the Hirota–miwa Equation
We study the Desargues maps φ : Z → P , which generate lattices whose points are collinear with all their nearest (in positive directions) neighbours. The multidimensional consistency of the map is equivalent to the Desargues theorem and its higher-dimensional generalizations. The nonlinear counterpart of the map is the non-commutative (in general) Hirota–Miwa system. In the commutative case of...
متن کاملOn Discrete Painlevé Equations Associated with the Lattice Kdv Systems and the Painlevé Vi Equation
1 Abstract A new integrable nonautonomous nonlinear ordinary difference equation is presented which can be considered to be a discrete analogue of the Painlevé V equation. Its derivation is based on the similarity reduction on the two-dimensional lattice of integrable partial difference equations of KdV type. The new equation which is referred to as GDP (generalised discrete Painlevé equation) ...
متن کاملOn Reductions of the Hirota–Miwa Equation
The Hirota–Miwa equation (also known as the discrete KP equation, or the octahedron recurrence) is a bilinear partial difference equation in three independent variables. It is integrable in the sense that it arises as the compatibility condition of a linear system (Lax pair). The Hirota–Miwa equation has infinitely many reductions of plane wave type (including a quadratic exponential gauge tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of High Energy Physics
سال: 2019
ISSN: 1029-8479
DOI: 10.1007/jhep10(2019)227